Climate performance and sustainable passive systems analysis of the hotel “Ciudad de Catamayo” in downtown Catamayo

Authors

  • María Paula Arias Córdova Facultad de Arquitectura y Urbanismo, Universidad UTE
  • Patricio Rafael Simbaña Escobar Facultad de Arquitectura y Urbanismo, Universidad UTE
  • Jaime F. Arroba Facultad de Arquitectura y Urbanismo, Universidad UTE
  • Cristhian V. García Facultad de Arquitectura y Urbanismo, Universidad UTE
  • Melanie G. Obando Facultad de Arquitectura y Urbanismo, Universidad UTE

DOI:

https://doi.org/10.29019/eidos.v17i23.1279

Keywords:

climatic analysis, comfort zone, natural ventilation, energy consumption, shading gain, air renewal

Abstract

Nowadays, architectural projects that include a
sustainable approach by understanding the climatic
conditions of the site, guarantee a better thermal
comfort performance to its users. In addition, there is a
growing demand from users and tourists for sustainable
projects whose carbon footprint is the smallest possible
to protect the environment in compliance with the UN’s
2030 sustainable agenda. Due to the tourist potential
of Catamayo and the climatic characteristics that are
presented, this academic article evaluates the climatic
conditions of the site, and the behavior of an existing
building in Catamayo, on which recommendations
are generated to improve the comfort zone inside
the building based on sustainable passive strategies.
This includes the climatic analysis of the site using
the psychometric chart, wind rose and stereological
chart to know its climatic variation and focus the data

obtained in the analysis on the existing building of the
hotel “Ciudad de Catamayo”. In fact, the building faces
long hours of solar exposure during the day, which
conditions to generate a high energy consumption
to maintain an adequate internal temperature for its
guests. Therefore, based on the data from the analysis
and several simulations of solar and wind paths, passive
strategies are established to be implemented that allow
the building to reduce solar radiation gain and include
natural ventilation to reduce energy consumption and
improve the internal comfort zone of the hotel.

Downloads

Download data is not yet available.

References

AbrirArchivos (2023). Aprende a abrir Archivos .EPW – Tutorial paso a paso. Consultado el día 27/8/2023. Disponible en: https://abrirarchivos.com/epw/

Barton, J. R. (Agosto de 2006). Sustentabilida urbana como planificacion estratégica. Vol. N° 96, 27-45 p.

Bravo, Hidalgo, D., & Perez Guerra, Y. (2016). Eficiencia energética en la climatización de edificaciones. Universidad Internacional del Ecuador. https://dialnet.unirioja.es/servlet/articulo?codigo=5833428

Bowler, D. E., L. Buyung-Ali, T. M. Knight, and A. S. Pullin. 2010. Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landscape and Urban Planning 97 (3):147-155. http://dx.doi.org/10.1016/j.landurbplan.2010.05.006

Bustamante, W., & Encinas, F. (2012). PARÁMETROS DE DISEÑO Y DESEMPEÑO ENERGÉTICO EN EDIFICIOS DE CLIMA MEDITERRÁNEO. Pontificia Universidad Católica de Chile, 82, 116-119. https://doi.org/10.4067/s0717-69962012000300020

Chávez Del Valle, FJ Zona variable de confort térmico. Tesi doctoral, UPC, Departament de Construccions Arquitectòniques I, 2002. ISBN 8469987771. DOI 10.5821/dissertation-2117-93416. Disponible en: http://hdl.handle.net/2117/93416

Comunidad de Maestros unidos por la Fraternidad, CMF (2015). Tipos de métodos, investigación y diseño de investigación. Consultado el día 19/8/2023. Disponible en: https://webdelmaestrocmf.com/portal/tipos-de-metodos-investigacion-y-diseno-de-investigacion/

Gill, S. E., J. F. Handley, A. R. Ennos, and S. Pauleit. 2007. Adapting cities for climate change: the role of the green infrastructure. Built Environment 33:115-133. http://dx.doi. org/10.2148/benv.33.1.115

Guillén, V. (2014). Metodología de evaluación de confort térmico exterior para diferentes pisos climáticos en Ecuador. CONAMA, 13.

Kanters, J. Horvat, M. (2012). Solar energy as a design parameter in urban planning. Energy Proc: 1143-1152

Kabisch, N., N. Frantzeskaki, S. Pauleit, S. Naumann, M. Davis, M. Artmann, D. Haase, S. Knapp, H. Korn, J. Stadler, K. Zaunberger, and A. Bonn. 2016. Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society 21(2):39. http://dx.doi.org/10.5751/ ES-08373-210239

Naciones Unidas (2018), La agenda 2030 y los Objetivos de Desarrollo Sostenibles: una oportunidad para América Latina y el Caribe (LC/G.2681-P/Rev.3), Santiago.

NEC Norma Ecuatoriana de la Construccion (2018). Capitulo 13 Eficiencia energetica en la construcción en Ecuador. Quito: Ministerio de Desarrollo Urbano y Vivienda. MIDUVI.

Pourrut, P., & all, e. (s/n). El clima del Ecuador. Artículo III Clima del Ecuador, 14 - 26.

Simbaña, P. et al. (2020) ‘The urban impact of sustainable design interventions in Quito: Case study of the implementation of the eco-efficient tool in “la carolina” neighborhood in Quito’, XII Seminario Internacional de Investigación en Urbanismo, São Paulo-Lisboa, 2020 [Preprint]. doi:10.5821/siiu.9937.

Tojo, J. F. (2010). Metodología del urbanismo bioclimático. En E. Higueras, Urnanismo Bioclimático (págs. 85 - 93). Gustavo Gili.

Published

2024-01-01

How to Cite

Arias Córdova, M. P., Simbaña Escobar, P. R., Arroba, J. F., García , C. V., & Obando, M. G. (2024). Climate performance and sustainable passive systems analysis of the hotel “Ciudad de Catamayo” in downtown Catamayo. Eidos, 17(23), 97–108. https://doi.org/10.29019/eidos.v17i23.1279