Study of an Environmentally Friendly High-Performance Concrete (HPC) Manufactured with the Incorporation of a Blend of Micro-Nano Silica.

Authors

  • Jhon Fabricio Tapia Vargas Maestría en Construcciones de Obras Civiles Mención Gestión y Dirección, Facultad de ingeniería y Ciencias aplicadas, Universidad Central del Ecuador, av. Universitaria.
  • Mohammadfarid Alvansazyazdi 1. Institute of Science and Concrete Technology, ICITECH, Universitat Politècnica de València,Spain; 2. Carrera de Ingeniería Civil, Universidad Central del Ecuador, Av. Universitaria, Quito 170521, Ecuador; 3. Facultad Ingeniería, Industria y Construcción, Carrera Ingeniería Civil, Universidad Laica Eloy alfaro de Manabi, Manta, Ecuador.
  • Alexis Andrés Barrionuevo Castañeda Gobierno Autónomo Descentralizado Municipal del Cantón Pastaza.

DOI:

https://doi.org/10.29019/eidos.v17i24.1369

Keywords:

Cementitious Environmentally Friendly, HPC Materials, Microsilica, Nano-silica, Physical-mechanical properties, sustainability

Abstract

This study evaluates the influence of varying proportions of nano-silica (NS) and microsilica (MS) as partial substitutes for cement in the formulation of high-performance concrete (HPC). Mechanical assessments, including compression, tension, flexural strength, dynamic modulus, Poisson's ratio, and elasticity measurements, were performed at intervals of 3, 7, 28, 56, and 91 days to understand the impact on HPC's structural characteristics. Additionally, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-Ray spectroscopy (EDS) were carried out to examine changes in microstructure. Results indicate that incorporating 15% microsilica in the concrete mix yields a more pronounced improvement in mechanical properties compared to adding only 3% nano-silica, surpassing even the combination of 15% microsilica and 3% nano-silica. This substitution approach enhances sustainability by reducing cement usage.

Downloads

Download data is not yet available.

References

Abd Elrahman, M., Chung, S.-Y., Sikora, P., Rucinska, T., & Stephan, D. J. M. (2019). Influence of nanosilica on mechanical properties, sorptivity, and microstructure of lightweight concrete. 12(19), 3078.

Abdalla, J. A., Thomas, B. S., Hawileh, R. A., & Kabeer, K. S. A. J. M. T. P. (2022). Influence of nanomaterials on the water absorption and chloride penetration of cement-based concrete. 65, 2066-2069.

Adamu, I., Kaura, J., Lawan, A., & Ocholi, A. J. N. J. o. T. (2020). Effect of nanosilica on the mechanical and microstructural properties of a normal strength concrete produced in Nigeria. 39(3), 710-720.

Alsalman, A., Dang, C. N., Prinz, G. S., Hale, W. M. J. C., & Materials, B. (2017). Evaluation of modulus of elasticity of ultra-high performance concrete. 153, 918-928.

Alvansaz, M. F., Arico, B. A., & Arico, J. A. (2022). Eco-friendly concrete pavers made with Silica Fume and Nanosilica Additions. INGENIO, 5(1), 34-42.

Alvansaz, M. F., Arico, B. A., & Arico, J. A. J. I. (2022). Eco-friendly concrete pavers made with Silica Fume and Nanosilica Additions. 5(1), 34-42.

Alvansaz, M. F., Bombon, C., & Rosero, B. (2022a). Study of the Incorporation of Nano-SiO2 in High-Performance Concrete (HPC).

Alvansaz, M. F., Bombon, C., & Rosero, B. J. I. (2022b). Estudio de la Incorporación de Nano Sílice en Concreto de Alto Desempeño (HPC). 5(1), 12-21.

Alvansazyazdi, M., Alvarez-Rea, F., Pinto-Montoya, J., Khorami, M., Bonilla-Valladares, P. M., Debut, A., & Feizbahr, M. (2023). Evaluating the Influence of Hydrophobic Nano-Silica on Cement Mixtures for Corrosion-Resistant Concrete in Green Building and Sustainable Urban Development. Sustainability, 15(21), 15311.

Alvansazyazdi, M., & Rosero, J. A. (2019). The pathway of concrete improvement via nano-technology. INGENIO, 2(1), 52-61.

Aly, M. (2012). Development of an eco-friendly composite material for engineering applications. Dublin City University,

Ardalan, R. B., Jamshidi, N., Arabameri, H., Joshaghani, A., Mehrinejad, M., Sharafi, P. J. C., & Materials, B. (2017). Enhancing the permeability and abrasion resistance of concrete using colloidal nano-SiO2 oxide and spraying nanosilicon practices. 146, 128-135.

Ashwini, R., Potharaju, M., Srinivas, V., Kanaka Durga, S., Rathnamala, G., & Paudel, A. J. J. o. N. (2023). Compressive and flexural strength of concrete with different nanomaterials: a critical review. 2023.

ASTM. (2006). ASTM C136-06: Standard test method for sieve analysis of fine and coarse aggregates. In: ASTM International West Conshohocken, PA, USA.

Barrionuevo Castañeda, A. A., & Tapia Vargas, J. F. (2021). Estudio de un hormigón Eco-Amigable de alto desempeño (HPC) fabricado con la incorporación de una mezcla entre Micro-Nano Sílice. Quito: UCE,

Bautista-Gutierrez, K. P., Herrera-May, A. L., Santamaría-López, J. M., Honorato-Moreno, A., & Zamora-Castro, S. A. J. M. (2019). Recent progress in nanomaterials for modern concrete infrastructure: Advantages and challenges. 12(21), 3548.

Biernacki, J. J., Bullard, J. W., Sant, G., Brown, K., Glasser, F. P., Jones, S., . . . Olek, J. (2017). Cements in the 21st century: Challenges, perspectives, and opportunities. Journal of the American Ceramic Society, 100(7), 2746-2773.

C-161, A. (2009). 1611/C 1611M: Standard test method for slump flow of self-consolidating concrete. Annual Book of ASTM Standards, 4, 850-855.

Chithra, S., Kumar, S. S., Chinnaraju, K. J. C., & Materials, B. (2016). The effect of Colloidal Nano-silica on workability, mechanical and durability properties of High Performance Concrete with Copper slag as partial fine aggregate. 113, 794-804.

De Bejar, L. A. J. E. F. M. (2019). Virtual estimation of the Griffith’s modulus and cohesive strength of ultra-high performance concrete. 216, 106488.

Duffadar, R. D., Davis, J. M. J. J. o. c., & science, i. (2008). Dynamic adhesion behavior of micrometer-scale particles flowing over patchy surfaces with nanoscale electrostatic heterogeneity. 326(1), 18-27.

Emanuel, C. (2011). Plasticizer market update. Paper presented at the 22nd Annual Vinyl Compounding Conference.

Feizbahr, M., Mirhosseini, S. M., & Joshaghani, A. H. (2020). Improving the performance of conventional concrete using multi-walled carbon nanotubes. Express Nano Letters, 1, 1-9.

Galeote Moreno, E. (2012). Influencia de la nanosílice sobre las características de un microhormigón de ultra alta resistencia. Universitat Politècnica de Catalunya,

Ganesh, P., Ramachandra Murthy, A., Sundar Kumar, S., Mohammed Saffiq Reheman, M., & Iyer, N. R. J. M. o. C. R. (2016). Effect of nanosilica on durability and mechanical properties of high-strength concrete. 68(5), 229-236.

Gedam, B. A., Singh, S., Upadhyay, A., & Bhandari, N. (2019). Improved durability of concrete using supplementary cementitious materials. Paper presented at the Fifth International Conference on Sustainable Construction Materials and Technologies. Kingston University, London, UK.

Gesoglu, M., Güneyisi, E., Asaad, D. S., Muhyaddin, G. F. J. C., & Materials, B. (2016). Properties of low binder ultra-high performance cementitious composites: Comparison of nanosilica and microsilica. 102, 706-713.

Golewski, G. L. J. E. (2022). Combined effect of coal fly ash (CFA) and nanosilica (nS) on the strength parameters and microstructural properties of eco-friendly concrete. 16(1), 452.

Hassan, M. S. J. T. O. C. E. J. (2019). Adequacy of the ASTM C1240 specifications for nanosilica pozzolans. 13(1).

Hossain, M. U., Ng, S. T., Antwi-Afari, P., & Amor, B. (2020). Circular economy and the construction industry: Existing trends, challenges and prospective framework for sustainable construction. Renewable and Sustainable Energy Reviews, 130, 109948.

Jagadesh, P., Charai, M., Hakeem, I. Y., Madenci, E., Ozkilic, Y. O. J. S., & structures, c. (2023). A potential review on the influence of nanomaterials on the mechanical properties of high strength concrete. 48(6), 649.

Kancharla, R., Maddumala, V. R., Prasanna, T., Pullagura, L., Mukiri, R. R., & Prakash, M. V. J. J. o. N. (2021). Flexural behavior performance of reinforced concrete slabs mixed with nano-and microsilica. 2021, 1-11.

Khorami, M., Navarro-Gregori, J., & Serna, P. (2021). The Effect of Fiber Content on the Post-cracking Tensile Stiffness Capacity of R-UHPFRC. Paper presented at the Fibre Reinforced Concrete: Improvements and Innovations: RILEM-fib International Symposium on FRC (BEFIB) in 2020 10.

Khorami, M., Navarro-Gregori, J., Serna, P. J. M., & Structures. (2021). Tensile behaviour of reinforced UHPFRC elements under serviceability conditions. 54, 1-17.

Kimura, H., Wada, K., Senshu, H., & Kobayashi, H. J. T. A. J. (2015). Cohesion of amorphous silica spheres: Toward a better understanding of the coagulation growth of silicate dust aggregates. 812(1), 67.

Konsta-Gdoutos, M. S. J. J. o. S. C.-B. M. (2014). Nanomaterials in self-consolidating concrete: a state-of-the-art review. 3(3-4), 167-180.

Li, W., Long, C., Tam, V. W., Poon, C.-S., Duan, W. H. J. C., & Materials, B. (2017). Effects of nano-particles on failure process and microstructural properties of recycled aggregate concrete. 142, 42-50.

Lim, S., & Mondal, P. J. A. M. J. (2015). Effects of Nanosilica Addition on Increased Thermal Stability of Cement-Based Composite. 112(2).

Mahmood, S., Basher, M. A., Saber Agha, A. Z. J. J. o. E., & Development, S. (2018). Effecte of fly ash as a sustainable material on lightweight foamed concrete mixes. 22.

Min, J., Baek, S., Somasundaran, P., & Lee, J. W. J. L. (2016). Anti-adhesive behaviors between solid hydrate and liquid aqueous phase induced by hydrophobic silica nanoparticles. 32(37), 9513-9522.

Morales, L., Alvansazyazdi, F., Landázuri, P., & Vásconez, W. J. R. I. S. E. T. I. E. (2020). Prevención de la contaminación por la fabricación de hormigones con nanopartículas. 30, 309-324.

Nasution, A., Imran, I., & Abdullah, M. J. P. E. (2015). Improvement of concrete durability by nanomaterials. 125, 608-612.

Niş, A., Eren, N. A., & Çevik, A. J. C. I. (2021). Effects of nanosilica and steel fibers on the impact resistance of slag based self-compacting alkali-activated concrete. 47(17), 23905-23918.

Noguchi, T., Tomosawa, F., Nemati, K. M., Chiaia, B. M., & Fantilli, A. P. J. A. S. J. (2009). A practical equation for elastic modulus of concrete. 106(5), 690.

Norhasri, M. M., Hamidah, M., Fadzil, A. M. J. C., & Materials, B. (2017). Applications of using nano material in concrete: A review. 133, 91-97.

Ouyang, X., Shi, C., Wu, Z., Li, K., Shan, B., Shi, J. J. C., & Research, C. (2020). Experimental investigation and prediction of elastic modulus of ultra-high performance concrete (UHPC) based on its composition. 138, 106241.

Qing, Y., Zenan, Z., Li, S., & Rongshen, C. J. J. o. W. U. o. T.-M. S. E. (2006). A comparative study on the pozzolanic activity between nano-SiO 2 and silica fume. 21, 153-157.

Rupasinghe, M., Mendis, P., Gammampila, R., & Ngo, T. (2011). Nanoengineering concrete for sustainable built environment: a review.

Scrivener, K., Füllmann, T., Gallucci, E., Walenta, G., Bermejo, E. J. C., & Research, C. (2004). Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods. 34(9), 1541-1547.

Senff, L., Hotza, D., Repette, W., Ferreira, V., & Labrincha, J. J. A. i. a. c. (2010). Effect of nanosilica and microsilica on microstructure and hardened properties of cement pastes and mortars. 109(2), 104-110.

Shafieifar, M., Farzad, M., Azizinamini, A. J. C., & Materials, B. (2017). Experimental and numerical study on mechanical properties of Ultra High Performance Concrete (UHPC). 156, 402-411.

Shoukry, H. J. N. H., & Composites. (2019). Development of nano modified eco-friendly green binders for sustainable construction applications. 24, 25-36.

Torabian Isfahani, F., Redaelli, E., Lollini, F., Li, W., Bertolini, L. J. A. i. M. S., & Engineering. (2016). Effects of nanosilica on compressive strength and durability properties of concrete with different water to binder ratios. 2016.

Urgiles Sarmiento, T. A. (2018). Incidencia de la adicción de fibras de acero en el hormigón empleado para pavimentos rígidos.

Varghese, L., Kanta Rao, V., & Parameswaran, L. (2019). Effect of nanosilica and microsilica on bond and flexural behaviour of reinforced concrete. Paper presented at the Recent Advances in Structural Engineering, Volume 2: Select Proceedings of SEC 2016.

Yépez, F. (2016). Hormigones de ultra alto desempeño: diseño para una alta resistencia a la compresión (138 megapascal) ya la erosión-abrasión manteniendo alta trabajabilidad. Alternativas, 17(3), 215-223.

Yıldırım, H., Sengul, O. J. C., & materials, b. (2011). Modulus of elasticity of substandard and normal concretes. 25(4), 1645-1652.

Zanon, T., Schmalz, R., & Ferreira, F. G. d. S. J. R. A. (2018). Evaluation of nanosilica effects on concrete submitted to chloride ions attack. 8(2), 138-149.

Downloads

Published

2024-07-01

How to Cite

Tapia Vargas, J. F., Alvansazyazdi, M., & Barrionuevo Castañeda, A. A. (2024). Study of an Environmentally Friendly High-Performance Concrete (HPC) Manufactured with the Incorporation of a Blend of Micro-Nano Silica. Eidos, 17(24), 95–110. https://doi.org/10.29019/eidos.v17i24.1369