Frequency Responses of a Graphene Oxide Reinforced Concrete Structure

Authors

  • Mostafa Habibi 1. Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; 2. Faculty of Electrical-Electronic Engineering, Duy Tan University, Da Nang 550000, Viet Nam; 3. Department of biomaterials, Saveetha Dental College and Hospital, Saveetha institute of Medical and Technical Sciences, Chennai, 600 077, India; 4. Center of Excellence in Design, Robotics, and automation, Department of Mechanical Engineering, Sharif University of Technology, azadi avenue, P.O. box 11365-9567, Tehran, Iran.
  • Mohammad Habibi Department of Materials and Metallurgy, Faculty of Mechanical and Energy Engineering, Shahid beheshti University, Tehran, Iran.
  • Emad Toghroli Department of Civil Engineering, Calut Company Holding, Melbourne, 800, Australia.
  • Maryam Safa 1. institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; 2. Faculty of Electrical-Electronic Engineering, Duy Tan University, Da Nang 550000, Viet Nam.
  • Morteza Shariati 1. Department of Civil Engineering, Calut Company Holding, Melbourne, 800, Australia; 2. Department of Civil Engineering Discipline, School of Engineering, Monash University, Melbourne 3800, Australia.

DOI:

https://doi.org/10.29019/eidos.v17i24.1382

Keywords:

Frequency, vibration, GDQM, graphene oxide powders, stability

Abstract

This paper presents a comprehensive investigation
on the vibrations of reinforced concrete structure by
graphene oxide powders (GOPs) using a polynomial
displacement field and the Generalized Differential
Quadrature Method (GDQM). The study focuses on
analyzing the dynamic behavior of the structure and
assessing the effects of three different distribution
patterns of GOPs on its vibrations. To accurately model
the deformation of the pressure vessel, a polynomial
displacement field is employed, taking into account
the complex geometrical and material properties
of the structure. The results highlight the significant
influence of the distribution pattern of GOPs on the
natural frequencies of the spherical concrete pressure
vessel. The analysis reveals that variations in the
weight fraction and arrangement of GOPs have a direct

impact on the stiffness and dynamic characteristics
of the structure. Specifically, increasing the weight
fraction of GOPs generally leads to higher natural
frequencies, indicating enhanced structural rigidity.
Moreover, the polynomial displacement field and
GDQM demonstrate their effectiveness in accurately
predicting the vibrations of the reinforced pressure
vessel. The combination of these numerical techniques
enables efficient and reliable analysis of the dynamic
response, allowing for optimization of the design and
performance of spherical concrete pressure vessels.

Downloads

Download data is not yet available.

References

Al-Furjan, M. S. H., Habibi, M., Jung, D. w., Sadeghi, S., Safarpour, H., Tounsi, A., & Chen, G. (2022). A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel. Engineering with Computers, 38(2), 1679-1696. doi:https://doi.org/10.1007/s00366-020-01130-8

Al-Furjan, M. S. H., Oyarhossein, M. A., Habibi, M., Safarpour, H., & Jung, D. W. (2020). Wave propagation simulation in an electrically open shell reinforced with multi-phase nanocomposites. Engineering with Computers. doi:https://doi.org/10.1007/s00366-020-01167-9

Chen, Y. Z., & Lin, X. Y. (2008). Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials. Computational Materials Science, 44(2), 581-587. doi:https://doi.org/10.1016/j.commatsci.2008.04.018

Cong, S., Cheng, Z., Tang, L., & Ling, X. (2023). Fatigue properties and microstructure of graphene oxide/microcapsule self-healing concrete. Journal of Building Engineering, 70, 106264. doi:https://doi.org/10.1016/j.jobe.2023.106264

Dai, Z., Jiang, Z., Zhang, L., & Habibi, M. (2021). Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell. Advances in nano research, 10(2), 175. doi:https://doi.org/10.12989/anr.2021.10.2.175

Dong, Q., Li, Q. M., & Zheng, J. Y. (2010). Interactive mechanisms between the internal blast loading and the dynamic elastic response of spherical containment vessels. International Journal of Impact Engineering, 37(4), 349-358. doi:https://doi.org/10.1016/j.ijimpeng.2009.10.004

Ebrahimi, F., Hajilak, Z. E., Habibi, M., & Safarpour, H. (2019). Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(13), 4590-4605. doi:https://doi.org/10.1177/0954406219832323

Ebrahimi, F., Mohammadi, K., Barouti, M. M., & Habibi, M. (2019). Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell. Waves in Random and Complex Media, 1-27. doi:https://doi.org/10.1080/17455030.2019.1694729

Ebrahimi, F., Supeni, E. E. B., Habibi, M., & Safarpour, H. (2020). Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer. The European Physical Journal Plus, 135(2), 144. doi:https://doi.org/10.1140/epjp/s13360-020-00217-x

Ghavanloo, E., Rafii-Tabar, H., & Fazelzadeh, S. A. (2019). New insights on nonlocal spherical shell model and its application to free vibration of spherical fullerene molecules. International Journal of Mechanical Sciences, 161-162, 105046. doi:https://doi.org/10.1016/j.ijmecsci.2019.105046

Godoy, L. A. (1987). A simplified bending analysis of imperfect spherical pressure vessels. International Journal of Pressure Vessels and Piping, 27(5), 385-399. doi:https://doi.org/10.1016/0308-0161(87)90059-7

Guo, J., Baharvand, A., Tazeddinova, D., Habibi, M., Safarpour, H., Roco-Videla, A., & Selmi, A. (2021). An intelligent computer method for vibration responses of the spinning multi-layer symmetric nanosystem using multi-physics modeling. Engineering with Computers, 1-22. doi:https://doi.org/10.1007/s00366-021-01433-4

Habibi, M., Mohammadi, A., Safarpour, H., Shavalipour, A., & Ghadiri, M. (2021). Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mechanics Based Design of Structures and Machines, 49(5), 640-658.

Habibi, M., Safarpour, M., & Safarpour, H. (2020). Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods. Mechanics Based Design of Structures and Machines, 1-22. doi:https://doi.org/10.1080/15397734.2020.1779086

Hamed, E., Bradford, M. A., & Ian Gilbert, R. (2010). Nonlinear long-term behaviour of spherical shallow thin-walled concrete shells of revolution. International Journal of Solids and Structures, 47(2), 204-215. doi:https://doi.org/10.1016/j.ijsolstr.2009.09.027

Hashemi, H. R., Alizadeh, A. a., Oyarhossein, M. A., Shavalipour, A., Makkiabadi, M., & Habibi, M. (2019). Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure. Waves in Random and Complex Media, 1-27. doi:https://doi.org/10.1080/17455030.2019.1662968

Hutchinson, J. W. (2016). Buckling of spherical shells revisited. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2195), 20160577. doi:https://doi.org/10.1098/rspa.2016.0577

Hwangbo, D., Son, D.-H., Suh, H., Sung, J., Bae, B.-I., Bae, S., . . . Choi, C.-S. (2023). Effect of nanomaterials (carbon nanotubes, nano-silica, graphene oxide) on bond behavior between concrete and reinforcing bars. Case Studies in Construction Materials, 18, e02206. doi:https://doi.org/10.1016/j.cscm.2023.e02206

Jaramillo, L. J., & Kalfat, R. (2023). Fresh and hardened performance of concrete enhanced with graphene nanoplatelets (GNPs). Journal of Building Engineering, 75, 106945. doi:https://doi.org/10.1016/j.jobe.2023.106945

Kong, F., Dong, F., Duan, M., Habibi, M., Safarpour, H., & Tounsi, A. (2022). On the vibrations of the Electrorheological sandwich disk with composite face sheets considering pre and post-yield regions. Thin-Walled Structures, 179, 109631. doi:https://doi.org/10.1016/j.tws.2022.109631

Lee, H.-S., Yoon, J.-H., Park, J.-S., & Yi, Y.-M. (2005). A study on failure characteristic of spherical pressure vessel. Journal of Materials Processing Technology, 164-165, 882-888. doi:https://doi.org/10.1016/j.jmatprotec.2005.02.208

Liu, D., Zhou, Y., & Zhu, J. (2021). On the free vibration and bending analysis of functionally graded nanocomposite spherical shells reinforced with graphene nanoplatelets: Three-dimensional elasticity solutions. Engineering Structures, 226, 111376. doi:https://doi.org/10.1016/j.engstruct.2020.111376

Liu, Z., Su, S., Xi, D., & Habibi, M. (2020). Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method. Mechanics Based Design of Structures and Machines, 1-26. doi:https://doi.org/10.1080/15397734.2020.1784201

Lu, L., Liao, K., Habibi, M., Safarpour, H., & Ali, H. E. (2023). Numerical methods to predict aero thermally induced vibrations of a curved pipe structure reinforced by GPLs. Paper presented at the Structures.

Lu, S., Li, S., Habibi, M., & Safarpour, H. (2023). Improving the thermo-electro-mechanical responses of MEMS resonant accelerometers via a novel multi-layer perceptron neural network. Measurement, 113168. doi:https://doi.org/10.1016/j.measurement.2023.113168

Ma, B., Chen, K.-y., Habibi, M., & Albaijan, I. (2023). Static/dynamic analyses of sandwich micro-plate based on modified strain gradient theory. Mechanics of Advanced Materials and Structures, 1-8. doi:https://doi.org/10.1080/15376494.2023.2219453

Mahapatra, T. R., Kar, V. R., & Panda, S. K. (2015). Large Amplitude Vibration Analysis of Laminated Composite Spherical Panels Under Hygrothermal Environment. International Journal of Structural Stability and Dynamics, 16(03), 1450105. doi:https://doi.org/10.1142/S0219455414501053

Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H., & Foong, L. (2020). Thermal buckling responses of a graphene reinforced composite micropanel structure. International Journal of Applied Mechanics, 12(01), 2050010. doi:https://doi.org/10.1142/S1758825120500106

Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H., & Foong, L. K. (2020). Thermal Buckling Responses of a Graphene Reinforced Composite Micropanel Structure. International Journal of Applied Mechanics, 12(01), 2050010. doi:https://doi.org/10.1142/S1758825120500106

Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H., & Foong, L. K. (2020). Application of nonlocal strain–stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell. Engineering with Computers, 1-16. doi:https://doi.org/10.1007/s00366-020-01002-1

Moayedi, H., Habibi, M., Safarpour, H., Safarpour, M., & Foong, L. (2019). Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk. International Journal of Applied Mechanics, 11(10), 1950102. doi:https://doi.org/10.1142/S1758825119501023

Mohammadgholiha, M., Shokrgozar, A., Habibi, M., & Safarpour, H. (2019). Buckling and frequency analysis of the nonlocal strain–stress gradient shell reinforced with graphene nanoplatelets. Journal of Vibration and Control, 25(19-20), 2627-2640. doi:https://doi.org/10.1177/1077546319863251

Mohammadi, A., Lashini, H., Habibi, M., & Safarpour, H. (2019). Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM. Journal of Solid Mechanics, 11(2), 440-453. doi:10.22034/JSM.2019.665264

Oyarhossein, M. A., Alizadeh, A. a., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H., & Jung, D. W. (2020). Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes. Scientific reports, 10(1), 1-19. doi:https://doi.org/10.1038/s41598-020-61855-w

Pan, B., & Cui, W. (2010). An overview of buckling and ultimate strength of spherical pressure hull under external pressure. Marine Structures, 23(3), 227-240. doi:https://doi.org/10.1016/j.marstruc.2010.07.005

Pang, F., Li, H., Chen, H., & Shan, Y. (2021). Free vibration analysis of combined composite laminated cylindrical and spherical shells with arbitrary boundary conditions. Mechanics of Advanced Materials and Structures, 28(2), 182-199. doi:https://doi.org/10.1080/15376494.2018.1553258

Sajjad, U., Sheikh, M. N., & Hadi, M. N. S. (2022). Incorporation of graphene in slag-fly ash-based alkali-activated concrete. Construction and Building Materials, 322, 126417. doi:https://doi.org/10.1016/j.conbuildmat.2022.126417

Shahpari, M., Bamonte, P., & Jalali Mosallam, S. (2022). An experimental study on mechanical and thermal properties of structural lightweight concrete using carbon nanotubes (CNTs) and LECA aggregates after exposure to elevated temperature. Construction and Building Materials, 346, 128376. doi:https://doi.org/10.1016/j.conbuildmat.2022.128376

Shao, Y., Zhao, Y., Gao, J., & Habibi, M. (2021). Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force. Archives of Civil and Mechanical Engineering, 21(4), 1-29. doi:https://doi.org/10.1007/s43452-021-00279-3

Shariati, A., Habibi, M., Tounsi, A., Safarpour, H., & Safa, M. (2020). Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. Engineering with Computers, 1-20. doi:https://doi.org/10.1007/s00366-020-01024-9

Shariati, A., Mohammad-Sedighi, H., Żur, K. K., Habibi, M., & Safa, M. (2020). On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams. Materials, 13(7), 1707. doi:https://doi.org/10.3390/ma13071707

Shokrgozar, A., Safarpour, H., & Habibi, M. (2020). Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(2), 512-529. doi:https://doi.org/10.1177/0954406219883312

Siahkouhi, M., Razaqpur, G., Hoult, N. A., Hajmohammadian Baghban, M., & Jing, G. (2021). Utilization of carbon nanotubes (CNTs) in concrete for structural health monitoring (SHM) purposes: A review. Construction and Building Materials, 309, 125137. doi:https://doi.org/10.1016/j.conbuildmat.2021.125137

Tang, J., Wu, S., Habibi, M., Safarpour, M., & Ali, H. E. (2023). Flutter analysis of multi-directional functionally graded sector poroelastic disks. Aerospace Science and Technology, 140, 108481. doi:https://doi.org/10.1016/j.ast.2023.108481

Van Do, V. N., & Lee, C.-H. (2020). Static bending and free vibration analysis of multilayered composite cylindrical and spherical panels reinforced with graphene platelets by using isogeometric analysis method. Engineering Structures, 215, 110682. doi:https://doi.org/10.1016/j.engstruct.2020.110682

Wang, Y., Jia, Q., Deng, T., Habibi, M., Al-Kikani, S., & Ali, H. E. (2023). Wave propagation analysis of the ball in the handball's game. Structural Engineering and Mechanics, 85(6), 729-742.

Wang, Z., Yu, S., Xiao, Z., & Habibi, M. (2020). Frequency and buckling responses of a high-speed rotating fiber metal laminated cantilevered microdisk. Mechanics of Advanced Materials and Structures, 1-14. doi:https://doi.org/10.1080/15376494.2020.1824284

Wu, J., & Habibi, M. (2021). Dynamic simulation of the ultra-fast-rotating sandwich cantilever disk via finite element and semi-numerical methods. Engineering with Computers, 1-17. doi:https://doi.org/10.1007/s00366-021-01396-6

Yan, C., Wang, Y., Zhai, X., Meng, L., & Zhou, H. (2019). Experimental study on curved steel-concrete-steel sandwich shells under concentrated load by a hemi-spherical head. Thin-Walled Structures, 137, 117-128. doi:https://doi.org/10.1016/j.tws.2019.01.007

Yue, H., Hua, S., Qian, H., Yao, X., Gao, Y., & Jiang, F. (2022). Investigation on applicability of spherical electric arc furnace slag as fine aggregate in superplasticizer-free 3D printed concrete. Construction and Building Materials, 319, 126104. doi:https://doi.org/10.1016/j.conbuildmat.2021.126104

Zeng, H., Qu, S., Tian, Y., Hu, Y., & Li, Y. (2023). Recent progress on graphene oxide for next-generation concrete: Characterizations, applications and challenges. Journal of Building Engineering, 69, 106192. doi:https://doi.org/10.1016/j.jobe.2023.106192

Zhang, J., Zhang, M., Cui, W., Tang, W., Wang, F., & Pan, B. (2018). Elastic-plastic buckling of deep sea spherical pressure hulls. Marine Structures, 57, 38-51. doi:https://doi.org/10.1016/j.marstruc.2017.09.007

Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S., & Chai, G. (2020). Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory. Mechanics of Advanced Materials and Structures, 27(1), 3-11. doi:https://doi.org/10.1080/15376494.2018.1444216

Zhou, C., Zhao, Y., Zhang, J., Fang, Y., & Habibi, M. (2020). Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system. Advances in nano research, 9(4), 295-307. doi:https://doi.org/10.12989/anr.2020.9.4.295

Zingoni, A. (2022). Stress and buckling resistance of dual-purpose concrete shells. Thin-Walled Structures, 170, 108596. doi:https://doi.org/10.1016/j.tws.2021.108596

Downloads

Published

2024-07-01

How to Cite

Habibi, M., Habibi, M., Toghroli, E., Safa, M., & Shariati, M. (2024). Frequency Responses of a Graphene Oxide Reinforced Concrete Structure. Eidos, 17(24), 63–79. https://doi.org/10.29019/eidos.v17i24.1382