Propuesta de pavimento de hormigón con fibras para la carretera de Salang, Afganistán: una revisión

Autores/as

  • Abdulhai Kaiwaan Afghan international islamic University, Structural Engineering Faculty, afghanistan.
  • Sayed Javid Azimi Afghan international islamic University, Structural Engineering Faculty, afghanistan.
  • Muhammad Aref Naimzad Kabul University, Structural Engineering Faculty, afghanistan.

DOI:

https://doi.org/10.29019/eidos.v17i24.1384

Palabras clave:

fibras, propiedades estructurales, pavimentos rígidos, temperatura, Salang-Road

Resumen

En este artículo se realizó una revisión intensiva para
proponer concreto de pavimento de fibras (FPC) para
Salang-Road, afganistán. además, también se evalua-
ron las propiedades estructurales del FPC y se com-
pararon con las de la carretera asfáltica. Existen varios
beneficios en la aplicación de fibra dentro de pavimen-
to rígido. Por ejemplo, el FPC tiene una vida más larga
y un menor costo de mantenimiento en comparación
con el pavimento flexible. En el diseño de pavimento
rígido, la temperatura y el espesor son dos parámetros
efectivos que podrían afectar ampliamente la inclusión
de fibra en el costo total del Proyecto de Carretera
Salang. Se introducen diferentes tipos de fibras con
optimización de la fracción volumétrica, económicas
y seguras. Se adoptó un concepto para cuantificar los
beneficios de agregar fibra en términos de extensión
de la vida útil del pavimento y también en términos de
reducción del espesor del concreto para la misma vida
útil de secciones de pavimento de concreto reforzado
y no reforzado, pues el uso de fibras reduce el espesor
del pavimento de la carretera, mejora la durabilidad y
posteriormente disminuye el costo total de la construc-
ción de carreteras con pavimento rígido de Salang.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Achilleos, C., Hadjimitsis, D., Neocleous, K., Pilakoutas, K., Neophytou, P. O., & Kallis, S. (2011). Proportioning of steel fibre reinforced concrete mixes for pavement construction and their impact on environment and cost. Sustainability, 3(7), 965-983.

AL-Kaissi, Z. A., Daib, A. S., & Abdull-Hussain, R. R. (2016). Experimental and numerical analysis of steel fiber reinforced concrete pavement. Journal of Engineering and Sustainable Development, 20(6), 135-155.

Hassouna, F., & Jung, Y. W. (2020). Developing a Higher Performance and Less Thickness Concrete Pavement: Using a Nonconventional Concrete Mixture. Advances in Civil Engineering, 2020.

Cervantes, V., & Roesler, J. (2009). Performance of concrete pavements with optimized slab geometry. Research Report ICT-09-053. Rantoul, IL: Illinois Center for Transportation.

Fuente-Alonso, J. A., Ortega-López, V., Skaf, M., Aragon, A., & San-Jose, J. T. (2017). Performance of fiber-reinforced EAF slag concrete for use in pavements. Construction and Building Materials, 149, 629-638.

Azimi, S. J. (2015). Structural Behaviour of Kenaf Fiber as Part Shear Reinforcement in Oil Palm Shell Reinforced Concrete Beams (Doctoral dissertation, UMP).

Azimi, S. J. (2017). Structural Behavior of Hair Fiber Reinforced Concrete Beams. IOSR Journal of Engineering, 7(01), 39-48.

Mohsin, S. M. S., Azimi, S. J., & Namdar, A. (2014). Behaviour of oil palm shell reinforced concrete beams added with kenaf Fibres. Applied Mechanics and Materials, 567, 351.

Syed Mohsin, S. M., Azimi, S. J., & Namdar, A. (2014). Behaviour of Oil Palm Shell Reinforced Concrete Beams Added with Kenaf Fibres. In Applied Mechanics and Materials (Vol. 567, pp. 351-355). Trans Tech Publications Ltd.

Azimi, S. J., Mohsin, S. M. B. S., Yahaya, F. B., & Namdar, A. (2014). An investigation on engineering properties of composite beam. Research Journal of Applied Sciences, Engineering and Technology, 8(6), 702-705.

Malistani, N., & Nejabi, M. N. (2019). Key technical considerations on rehabilitation of existing Salang Tunnel–Afghanistan. In 2019 Rock Dynamics Summit (pp. 383-388). CRC Press.

Lakshmayya, M. T. S., & Aditya, G. (2017). Design of Rigid Pavement and its Cost-Benefit Analysis By Usage of Vitrified Polish Waste and Recron Polyester Fibre. International Journal of Civil Engineering and Technology, 8(1).

Nobili, A., Lanzoni, L., & Tarantino, A. M. (2013). Experimental investigation and monitoring of a polypropylene-based fiber reinforced concrete road pavement. Construction and Building Materials, 47, 888-895.

Celis, O. C., & Mendoza, C. N. QUANTITATIVE ANALYSIS OF THE BEHAVIOR OF RAMIE FIBER-REINFORCED CONCRETE FOR RIGID PAVEMENT.

Ho, A. C., Turatsinze, A., Hameed, R., & Vu, D. C. (2012). Effects of rubber aggregates from grinded used tyres on the concrete resistance to cracking. Journal of Cleaner Production, 23(1), 209-215.

Prathipati, S. T., & Rao, C. B. K. (2020). A study on the uniaxial behavior of hybrid graded fiber reinforced concrete with glass and steel fibers. Materials today: proceedings, 32, 764-770.

Chi, Y., Xu, L., & Zhang, Y. (2014). Experimental study on hybrid fiber–reinforced concrete subjected to uniaxial compression. Journal of Materials in Civil Engineering, 26(2), 211-218.

Shafigh, P., Mahmud, H., & Jumaat, M. Z. (2011). Effect of steel fiber on the mechanical properties of oil palm shell lightweight concrete. Materials & Design, 32(7), 3926-3932.

Rana, A. (2013). Some studies on steel fiber reinforced concrete. International journal of emerging technology and advanced engineering, 3(1), 120-127.

Guo, H., Tao, J., Chen, Y., Li, D., Jia, B., & Zhai, Y. (2019). Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete. Construction and Building Materials, 224, 504-514.

Ali, B., Qureshi, L. A., & Kurda, R. (2020). Environmental and economic benefits of steel, glass, and polypropylene fiber reinforced cement composite application in jointed plain concrete pavement. Composites Communications, 22, 100437.

Mohammed, T. J., Bakar, B. A., & Bunnori, N. M. (2016). Torsional improvement of reinforced concrete beams using ultra high-performance fiber reinforced concrete (UHPFC) jackets–experimental study. Construction and Building Materials, 106, 533-542.

Safdar, M., Matsumoto, T., & Kakuma, K. (2016). Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC). Composite Structures, 157, 448-460.

Jamwal, V., & Singh, P. (2018). Use of glass fiber in pavement quality concrete slab. Int J Adv Res Ideas Innov Technol., 4(2), 1949-54.

Shakir, H. M., Al-Tameemi, A. F., & Al-Azzawi, A. A. (2021, May). A review on hybrid fiber reinforced concrete pavements technology. In Journal of Physics: Conference Series (Vol. 1895, No. 1, p. 012053). IOP Publishing.

Perkins, S. W., Christopher, B. R., Cuelho, E. L., Eiksund, G. R., Hoff, I., Schwartz, C. W., ... & Watn, A. (2004). Development of design methods for geosynthetic reinforced flexible pavements. Final Report, Montana State University, MT.

Ali, B., Qureshi, L. A., & Khan, S. U. (2020). Flexural behavior of glass fiber-reinforced recycled aggregate concrete and its impact on the cost and carbon footprint of concrete pavement. Construction and Building Materials, 262, 120820.

Bordelon, A. C. (2007). Fracture behavior of concrete materials for rigid pavement systems.

Choi, S. Y., Park, J. S., & Jung, W. T. (2011). A study on the shrinkage control of fiber reinforced concrete pavement. Procedia engineering, 14, 2815-2822.

Bywalski, C., Kamiński, M., Maszczak, M., & Balbus, Ł. (2015). Influence of steel fibres addition on mechanical and selected rheological properties of steel fibre high-strength reinforced concrete. Archives of Civil and Mechanical Engineering, 15(3), 742-750.

Kamel, M. A. (2016). Quantification of benefits of steel fiber reinforcement for rigid pavement. American Journal of Civil Engineering and Architecture, 4(6), 189-198.

Akil, H. M., Omar, M. F., Mazuki, A. A. M., Safiee, S., Ishak, Z. A. M., & Abu Bakar, A. (2011). Kenaf fiber reinforced composites: A review. Materials & Design, 32(8–9), 4107–4121.

Alengaram, U. J., Muhit, B. A. A., and Jumaat, M. Z. B. 2013. Utilization of oil palm kernel shell as lightweight aggregate in concrete–a review. Construction and Building Materials. 38: 161-172.

Almousawi, A. N. 2011. Flexural and Shear Performance of High Strength Lightweight Reinforced Concrete Beams (Ph.D.). University of Illinois at Chicago, United States.

Carmona, S., Aguado, A., and Molins, C. 2013. Characterization of the properties of steel fiber reinforced concrete by means of the generalized Barcelona test. Construction and Building Materials. 48: 592-600.

Chaallal, O., Nollet, M. J., and Perraton, D. 1998. Shear strengthening of RC beams by externally bonded side CFRP strips. Journal of Composites for Construction. 2(2): 111-113.

Deka, H., Misra, M., & Mohanty, A. (2013). Renewable resource based “all green composites” from kenaf biofiber and poly(furfuryl alcohol) bioresin. Industrial Crops and Products, 41, 94–101.

Hassanpour, M., Shafigh, P., and Mahmud, H. B. 2012. Lightweight aggregate concrete fiber reinforcement–a review. Construction and Building Materials. 37:452-461.

Mannan, M. A., and Ganapathy, C. 2002a. Engineering properties of concrete with oil palm shell as coarse aggregate. Construction and Building Materials. 16(1): 29-34.

Shafigh, P., Mahmud, H., and Jumaat, M. Z. 2011b. Effect of steel fiber on the mechanical properties of oil palm shell lightweight concrete. Materials and Design. 32(7): 3926-3932.

TEO, D. C. L., MANNAN, M. A., and KURIAN, V. J. 2006b. Structural concrete using oil palm shell (OPS) as lightweight aggregate. Turkish Journal of Engineering and Environmental Sciences. 30(4): 251-257

Zhang, J., Stang, H., & Li, V. C. (2001). Crack bridging model for fibre reinforced concrete under fatigue tension. International Journal of Fatigue, 23(8), 655–670.

Gorkem C, Sengoz B. Predicting stripping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime. Constr Build Mater 2009;23(6):2227–36.

Ramsamooj DV. An innovative technique for using polymer composites in airport pavement rehabilitation. Composites: Part B 2001;32(1):57–66.

Chen X, Huang B. Evaluation of moisture damage in hot mix asphalt using simple performance and superpave indirect tensile tests. Constr Build Mater 2008;22(9):1950–62.

Fitzgerald RL. Novel applications of carbon fiber for hot mix asphalt reinforcement and carbon–carbon pre-forms. MSc Thesis, Department of Chemical Engineering, Michigan Technological University; 2000.

Rahnama E. A comparison on the performance of styrene–butadiene–styrene (SBS) polymer and textile fibers modifying asphalt concrete (AC). MSc Thesis, Department of Civil Engineering, Iran University of Science and Technology, Iran; 2009.

Maurer DeanA, Gerald M. Field performance of fabrics and fibers to retard reflective cracking. Trans Res Rec 1989;1248:13–23.

Mahrez A, Karim M, Katman H. Fatigue and deformation properties of glass fiber reinforced bituminous mixes. J East Asia Soc Trans Studies 2005;6:997–1007.

Mahrez A, Karim M, Katman H. Prospect of using glass fiber reinforced bituminous mixes. J East Asia Soc Trans Studies 2003;5:794–807.

Peltonen P. Wear and deformation of characteristics of fiber reinforced asphalt pavements. Constr Build Mater 1991;5:18–22.

Button JW, Lytton RL. Evaluation of fabrics, fibers and grids in overlays. Sixth international conference on the structural design of asphalt pavements. Ann Arbor, M; 1987.

Huang H, White TD. Dynamic properties of fiber-modified overlay mixture. Trans Res Rec 1996;1545:98–104. [21] Wu S, Ye Q, Li N, Yue H. Effects of fibers on the dynamic properties of asphalt mixtures. J Wuhan Univ Technol – Mater Sci Ed 2007;22:733–6.

Putman BJ, Amirkhanian SN. Utilization of waste fibers in stone matrix asphalt mixtures, resources. Conserv Recycle 2004;42:265–74.

Chen H, Li N, Hu C, Zhang Z. Mechanical performance of fibers-reinforced asphalt mixture. J Chan Univ (Nat Sci Ed) 2004;24(2):1–5.

Echols J. New mix method for fiber-reinforced asphalt. Public Works 1989;119(8):72–3. Tapkın S. The effect of polypropylene fibers on asphalt performance. Build Environ 2008;43:1065–71.

Maurer DA, Malasheskie GJ. Field performance of fabrics and fibers to retard reflective cracking. Geotext Geomem 1989;8:239–67.

Abtahi SM, Khodadadi R, Hejazi SM, Tavakkol E. A feasibility study on the use of polypropylene fibers as a modifier in asphalt-concretes made from steel slag. In: 4th national conference on bitumen & asphalt, Tehran, Iran; 2008.

Hejazi SM, Abtahi SM, Sheikhzadeh M, Semnani D. Introducing two simple models for predicting fiber reinforced asphalt concrete (FRAC) behavior during longitudinal loads. Int J App Pol Sci 2008;109(5):2872–81.

Tapkın S, Usar U, Tuncan A, Tuncan M. Repeated creep behavior of polypropylene fiber-reinforced bituminous mixtures. J Trans Eng 2009;135(4):240–9.

El-Sheikh M, Sudol J, Daniel R. Cracking and seating of concrete pavement on I74. Trans Res Rec 1990;1268:25–33. [38] Daiga V. Polyester fiber-reinforced Id-2 wearing course. Report no. FHWAPA89-027+84-106; 1990. .

Munn D. Fiber-reinforced hot mix promises improved stability. High Health Const 1989;132(10):54–6.

Echols J. New method forces uniform fiber distribution. In: Pavement maintenance/management technology ’89, Roa Bri, 1989; 27(3): 85-86.

Vivier M, Brule B. Gap-graded cold asphalt concrete: benefits of polymer modified asphalt cement and fibers. Trans Res Board 1992;1342:9–12.

Maurer D, Arellano L. Polyester fiber-reinforced id-2 wearing course. Construction and early performance report. Report no. FHWAPA-87-001+84- 106; 1987. .

Putman BJ, Amirkhanian N. Utilization of waster fibers in stone matrix mixtures. Resour Conserv Recy 2004;42:265–75.

New Jersey Division of Highways (NJDH). Reflection cracking in bituminous overlays. Technical report; 1976.

Serfass J, Samanos J. Fiber-modified asphalt concrete characteristics, applications and behavior. J Assoc Asph Pav Tech 1996;65:193–230.

Jenq, Yeou-Shang, Liaw C, Pei Liu. Analysis of crack resistance of asphalt concrete overlays A fracture mechanics approach. Trans Res Rec 1993;1388:160–6.

Simpson, Amy L, Mahboub C. Case study of modified bituminous mixtures: somerset, kentucky. In: Proceedings of the third materials engineering conference, ASCE; 1994. p. 88–96.

Chen P, Chung D, Fu X. Micro structural and mechanical effects of latex, methylcellulose and silica fume on carbon fiber reinforced cement. ACI Mater J 1997;94(2):147–55. 876 S.M. Abtahi et al. / Construction and Building Materials 24 (2010) 871–877 [53] Parameswaran V. Fiber-reinforced concrete: a versatile construction material. Build Environ 1991;26(3):301–5.

Song PS, Hwang S, Sheu BC. Strength properties of nylon and polypropylene fiber-reinforced concretes. Cem Concr Res 2005;35(8):1546–50. [55] Yao W, Li J, Wu K. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cem Concr Res 2003;33(1):27–30.

Choi Y, Yuan RL. Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cem Concr Res 2005;35(8): 1587–91.

Alhozaimy AM, Soroushian P, Mirza F. Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials. Cem Concr Res Comp 1996;18(2):85–92.

Noumowe A. Mechanical properties and microstructure of high strength concrete containing polypropylene fibers exposed to temperatures up to 200 C. Cem Concr Res 2005;35(11):2192–8.

Singh S, Shukla A, Brown R. Pullout behavior of polypropylene fibers from cementitious matrix. Cem Concr Res 2004;34(10):1919–25.

Einsfeld A, Velasco L. Fracture parameters for high performance concrete. Cem Concr Res 2006;36(3):576–83.

Publicado

01-07-2024

Cómo citar

Kaiwaan, A., Azimi, S. J., & Naimzad, M. A. (2024). Propuesta de pavimento de hormigón con fibras para la carretera de Salang, Afganistán: una revisión. Eídos, 17(24), 129–144. https://doi.org/10.29019/eidos.v17i24.1384